Total No.	of Questions : 4]	SEAT No. :
P-5377		[Total No. of Pages : 2
1-3311	[6186] 503	
	S.E. (Civil) (Insem)
	FLUID MECHANI	CS
	(2019 Pattern) (Semester - II	II) (201003)
Time : 1 1	Hour]	[Max. Marks: 30
	ons to the candidates:	•
1)	Answer Q.1 or Q.2, Q.3 or Q.4.	9
2)	Figures to the right indicate full marks.	
3)	Neat diagrams must be drawn wherever nec	essary.
4)	Assume suitable data if required.	
5)	Use of logarithmic tables, slide rule, Mol	
7	calculator (nonprogrammable) and steam to	bles is allowed.
Q1) a)	If density of a liquid is 837 kg/m³ find its: -	[5]
	i) specific weight,	
	ii) secific gravity and	
	iii) specific volume. If kinematic viscosity obtain its dynamic viscosity.	of this liquid is 1.73 cm ² /sec
b)	Differentiate between "Surface Tension" an example of each.	d "Capillarity". Give practical [5]
c)	Define "Metacenter" and "Metacentric Hei in case of floating body.	ght". How they are important [5]

OR

- Q2) a) Five liters of oil weights 61.80 N. Calculate (i) Specific Weight, (ii) Specific Mass, (iii) Specific volume and (iv) Relative Density.[5]
 - b) What is kinematic viscosity? Why it is so called? Give its units and dimensions. [5]
 - c) Explain with neat sketches various conditions of equilibrium related to stability of floating body. [5]

Q 3)	a)	Define: (i) Path Line (ii) Stream Line (iii) Stream Tube (iv) Streak Line.[5]		
	b)	Derive the continuity equation for three-dimensional flow.		
	c)	Sketch a Pitot tube and explain how it is used to measure the velocity flowing fluid. OR	of [5]	
04)	o)		[5]	
<i>Q4</i>)		Enlist different types of fluid flows and explain anyone in detail. [5]		
	b)	Derive the "Euler's Equation of Motion" along a stream tube. [5		
	c)	Oil of specific gravity 0.8 flows in a horizontal pipe at a height of 3 m above a datum plane. At a section of the pipe, diameter is 120 mm and the pressure intensity is 125 KN/m ² . If the total energy at the section is 25 m, find the rate of flow of oil. [5]		
[618	6]-50	above a datum plane. At a section of the pipe, diameter is 120 mm at the pressure intensity is 125 KN/m². If the total energy at the section 25 m, find the rate of flow of oil.	8C-23	